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Abstract

With the conventional computational {luid dynamics (CFD) approaches like unstructured high-density mesh method,
the problem about the solution dependencies on the grid and on the physical models isn’t completely resolved. In this
study, thus, a new approach named Building-Cube Method based on a Cartesian mesh is proposed using a high-density
mesh in order to solve the problem of the current CFD approaches. In the present method, a flow field is divided into a
number of cubes (squares in 2D) of various sizes. Each cube is a computational sub-domain with Cartesian mesh of
equal spacing and equal number of nodes. The geometrical size of each cube is determined by adapting to geometry
and flow features so as to cope with broadband characteristic lengths of the flow. Equal spacing and equal number of
Cartesian mesh in cach cube make it easy to parallelize the flow solver and to handle huge data output. The method is
applied to several airfoils including NACA0012 and two-element airfoils at relatively low Reynolds number, RAE2822
airfoil with transition trip at high Reynolds number and a four-element airfoil at high Reynolds number. These results

validate the capability of the present approach.
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1. Introduction

CFD has become an indispensable tool for de-
signing an airplane. However, wind tunnel experi-
ments are still required to confirm the computed
results. For flows at off-design conditions, the ex-
periment is the central player and the CFD plays a
subordinate part. This situation is mainly because of
the lack of the reliability in the current CFD due to
the dependencies of computed results on the grid and
on the turbulence models. To remove the grid
dependency, the most straightforward way is to use a
highly dense and regular grid. To remove the
dependency on physical models, we have to move
from the Reynolds-averaged Navier-Stokes equations
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to LES and DNS. This also means to usc a high-
density mesh and a spatially higher-order numerical
scheme (Mellen et al., 2003).

Meanwhile, the advancement of the computer
performance is expected to keep the current pace for a
while. The allowable mesh size will become an order
of one giga (1x10%) points soon, and will be one tera
points in near future. To meet the near-future
expectation of the advanced computer with a large
number of high performance processors and huge
memories, however, a simple extension of the
conventional numerical scheme will be stuck soon.
CFD using structured meshes has a difficulty in the
mesh generation for 3D complex geometries. CFD
using unstructwred meshes can now ireat really
complex geometry (Nakahashi et al., 2003), but has a
difficulty in constructing a higher-order numerical
scheme in space. Both approaches will also have a
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difficulty in the post processing of huge data
produced by the large-scale computations on near-
future computers. For the next-generation CFD
applicable for large-scale LES/DNS computations,
the simplicity of the numerical algorithm in all aspect
of the computations, from the mesh generation to the
post processing, is most important.

The requirements for the next gemeration CFD
method are; (1) capability to treat complex geo-
metries, (2) capability to use locally dense grid fitted
to the local characteristic flow length, (3) easy
adaptive refinement, (4) easy construction of higher-
order scheme, (5) efficient use of parallel computers,
(6) easy post processing for extremely large-scale
computations.

The final goal of the present study is to construct a
next-generation CFD that does not need to worry
about the grid and physical model dependencies. To
achieve this goal, a new approach named ‘Building-
Cube Method’ (Nakahashi, 2003), is developed in this
study.

2. Building-Cube Method

The Building-Cube Method (BCM) basically em-
ploys a uniform-spacing Cartesian mesh because of
the simplicity in the mesh generation, the solution
algorithm, and the post processing. The simplicity
will become more important for large-scale compu-
tations in future.

The most critical problem of the conventional
Cartesian mesh, however, is how to fit to the local
characteristic flow length without introducing the
algorithm complexity. Although the Cartesian mesh
approach with the adaptive mesh refinement and the
cut-cell near the boundaries shows the high capability
for complex geometries, the introduction of irregular
subdivisions into the Cartesian grid complicates the
algorithm and increases the memory requirement.
Therefore this approach is basically same with the
unstructured mesh approach and the advantages of the
Cartesian mesh over the unstructured grid, such as
simplicity and less memory requirement, may
disappear.

Here, a flow field is divided into a number of sub-
domains, named ‘Cube’ as shown in Fig. 1. The
geometrical size of each cube is determined by
adapting to the geometry and the flow features. In
each cube, a uniform-spacing Cartesian mesh is used.
All cubes have the same number of Cartesian mesh so

Fig. 1. Cube boundaries of the BCM mesh around a four-
element airfoil; the entire view (upper) and the enlarged view.
(lower)

that the local computational resolution is determined
by the cube size. The same mesh density among all
cubes also simplifies the parallelization.

The wall boundary is defined by a staircase
representation in order to keep the simplicity of the
algorithm and to minimize the memory requirement
per node. To keep the geometrical accuracy by the
staircase representation of wall boundaries, very fine
mesh that resolves viscous sublayers in the boundary
layers is used. With this mesh size, the staircase
representation is accurate enough to approximate the
wall boundary as shown later. To use extremely fine
mesh is basically imperative for the DNS which is the
final goal of the present study.

With this approach, it is capable (1) to treat
complex geometries, (2) to use locally dense grid
fitted to the local characteristic flow length, (3) to
implement a higher-order scheme, (4) to use parallel
computers, (5) to treat extremely huge data in the
post-processing. These considerations are summarized
in Table 1.
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Table 1. Requirements for the next-generation CFD method and the compatibility of the current approaches.

Approaches Cartesian mesh
structured mesh | unstructured mesh uniform spacing with adaptive mesh| Building-Cube
Requirements refinement Method
H Capabxlgg;z:;:omplex Poor good good excellent excellent
Capability to use locally dense meshy
(2) | adapted to the local characteristic Good excellent poor excellent excellent
flow length
Easy construction of spatiall Good fair
3 construction ot spaiatly ~ (at most excellent fair excellent
higher-order scheme (Brd ) 2 order) .
(4) | Efficient use of parallel computers Good good good fair excellent
Easy post processing for huge
I
5) computational data Good poor good poor excellent

Fig. 2. Enlarged views of the BCM mesh around a four-
element airfoil, showing 64x64 Cartesian mesh in each cube
and the staircase representation of the wall boundaries.

3. Generation of 2D BCM mesh

The BCM-mesh generation of the present method
has two steps. The first step is a cube generation that
is to fill in a flow field with various sizes of cubes as
shown in Fig. 1. The second step is to generate
Cartesian mesh in cubes that locate near the body

(Fig. 2).

3.1 Division of a Computational domain

The cube-frame is generated by the geometry-
adaptive refinement method (Nakahashi and Egami,
1991), which is similar to the quadtree/octtree method
commonly used for generating Cartesian and
unstructured meshes. At first, a computational domain
is divided into a coarse Cartesian grid with equal
mesh spacing in all directions. Then, cubes (squares
for 2D) that include or cross the body boundary are
divided into eight cubes (four squares for 2D). This
refinement procedure is repeated until the minimum
cube size becomes smaller than a specified value.
After this refinement procedure, cubes that locate
completely inside of the body are removed.

The next procedure is a smoothing of the size
differences among cubes. At present, the size
difference between two adjacent cubes is limited to
two in order to minimize the data transfer error
between cubes. For this, a cube whose adjacent cube
is smaller than a quarter of the own size is detected
and divided.

Figure | is the entire view of the cube boundaries
around a multi-element airfoil and the enlarged view
with Cartesian mesh in cubes is shown in Fig. 2.

3.2 Generation of Cartesian mesh in each cube

Cartesian-mesh generation is not required for most
of the cubes because the Cartesian mesh inside of
each cube is simply defined by the number of division
along the cube edge. However, cubes that include the
wall boundary in them must have information about
the wall boundary location.

In the wall cube, Cartesian mesh is generated and
then each cell of the Cartesian mesh is checked
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Fig. 3. Cell flags and the runlength data line in j-k plane.

whether it is located inside or outside of the body.
Those cells inside of the body are marked 0, and
those outside of body are marked 1. The body
boundary is defined by the cell boundaries between
adjacent cells having different marks as shown in
Fig. 3.

3.3 BCM mesh data

For flow computations using a high-density mesh,
the size of the mesh file may become very large. This
is especially true for the unstructured mesh because
the unstructured mesh has to have the connection data
as well as the coordinate data of node points. For
large scale computations, the huge size of the mesh
file sometimes imposes the time-consuming pre- and
post-processings. One of the important advantages of
the Cartesian mesh is that the mesh data is simple and
compact. This advantage must be taken over by the
present method.

The BCM mesh has the following data;

(1) number of cubes,

(2) size and x, y, z coordinates of the front-lower-

left comer for each cube,

(3) cube-neighboring information for each cube,

(4) number of division of a cube,

(5) in-out information on cells in each wall cube.

Data from (1) to (3) are for the cube mesh, and data
(4) and (5) are for the Cartesian mesh in the wall
cubes. The number of cubes is about several hundreds
to at most thousands for two dimensional computations.
Therefore, the data size from (1) to (3) is very small.
Even for three-dimensional computations around an
airplane expected in near future, the data size of the

Fig. 4. The runlength data line in j-k-I space.

- cube mesh is small. Moreover, the data (3) is not

indispensable because it can be easily constructed by
the data (2) in the flow solver. However, the data (5)
may become very large because it contains the
information of all cells in the wall cubes.

In order to compress the data (5), the runlength data
structure, which is used for the image data com-
pression, is utilized. The original runlength is used
mainly to compress a monochrome bitmap data. It
describes the number of continues bits in the scanning
line of the image. Here the runlength concept is
extended to 2D and 3D fields by the following
equations.

In the present data, all cells have flags of 0 or | as
shown in Fig. 3. Therefore, the minimum information
is the location where the cell changes the flag value.
The location in the 2D field defined by (j, k) as shown
in Fig. 3 can be described by the one-dimensional
array of i by the following equations.

i=n(k=0)+pg+(1-p)n,+1-j), ()
p=mod(k,2), 2

where the n; is the number of cells in j-direction.
With these equations, the one-dimensional array,
say JK_runlength(i), can be as follows.
JK_runlength(l) = number of locations,
JK runlength(2) = flag value at (1,1),
JK runlength(i) for =3, JK runlength(1)+2
locations of the flag change.
Decoding of the one-dimensional array is given by,

k= INTEGER[(i—1)/n,]+1 3

J=li=n(k=1=(L-p)n, +B]/(2p-1) Cy)

For 3D field shown in Fig. 4,
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i=gi+(-g), +nn(k-1) 5
i =n(k=D+pj+(1-p)n, +1- j) (6)
h=n(n—k)+ pln, +1- ))+(1-p)j @)

where p=mod(k,2), q=mod(/,2).

With this compression, the mesh data size reduces
to three-order of magnitude smaller than the con-
ventional data structure. For example, the file size of
a mesh about 3x107 cells (500 cubes with 256x256
cells in each cube) is only 87 Kbytes in ASCII text
format

4. Numerical method

4.1 Governing equations

A non-dimensional form of the compressible
Navier-Stokes equations can be written in the Car-
testan coordinates x;, (j=1, 2, 3) as

8_Q+9E_L8G,:O (®)

ot dx; Re ox,
where Q =[p, pu, pv, pw,e]” is the vector of conser-
vative variables, p is the density, u, v, w are the
velocity components in the x, y, z directions and e the
total energy. The vector F(Q) and G(Q) represent the
inviscid and viscous flux vector respectively and Re
is the Reynolds number.

4.2 Basic numerical scheme

The Navier-Stokes equations are solved by a cell-
centered scheme on an equally-spacing Cartesian
mesh. For a cube-k, the Cartesian mesh spacing is
simply given by Ax, =As/n, where As, is the size
of the cube-k and n

cell

is the number of cells along

cell
each coordinate in a cube. This value is same for x, y
and z directions in 3D computations. However, for
2D computation shown in this paper, n_, In y-

cell
coordinate is set to be 2 in order to compute the two-
dimensional field by the 3D flow solver.

Equation (3.8) can be written in an algebraic form
as follows,

aQ,‘____l__ + N __1__
o Ax, [gh(Qﬁ’ y’»“'/) Re%:G(Q’nf/)] ®

where the summation j(;) means all six faces around

the regular hexahedron cell-i. The term h{n,) is an

inviscid numerical flux vector normal to the control
volume boundary, and Q;,Q; are values on both

sides of the control volume boundary. The numerical
flux h is computed using an approximate Riemann
solver of Harten-Lax-van Leer-Einfeldt-Wada (HLL-
EW) (Obayashi and Guruswamy, 1995). The pri-
mitive variables on the cell interface are evaluated by
the third-order MUSCL scheme with the differential
limiter or the fourth-order compact MUSCL scheme
{Yamamoto and Daiguji, 1993).

The fourth-order compact MUSCL scheme is as
follows.

The numerical flux of the MUSCL approach is
written in the splitting form

hm/z = h*(q/ﬁ]/:)"' h_(qfﬂ/z) (10)

The values q“and q" are calculated as

‘I/I;l/z =q,+ %(A.a/—l/z + 2A.6/+1/2)7 (i
qlkn/z =4, —7‘;(255/”/2 + A‘(—lm/z )
where
A.al-l/l = min mOd [A.ql> 2y bA.q/H/: :I ’
A.am/z =min mOd[A.q/»l/:’bA.q/-l/z} (12)
A‘am/z = min mod I:A.qm/:’bA.qm/z ] ’
A‘am/: =min mOd[A‘qm/z, bA‘qm/:]’
and
A'qm/: = Aq,n/: - %Azﬁ,q/:’ (13)
Alaj-’l/z = Aq/‘vlll - 2Aq/+1/2 + AEL«}/N (14
A—q—:—llz = minmod [Aq;‘—l/:’blAq j*) 2504 i+3/2]’
Aa,w: = minmod [Aq_/+1/z ’ b] Aq 320 blAq j-y2 ] ’
Aaj,;/z =min mOd[Aq,,z/:’beq/~1/zv blAqM/z :]’
(15)
and
1<b<4. (16)

The lower/upper symmetric Gauss-Seidel (LU-
SGS) implicit method is used for the time integration.
In order to keep the time accuracy, the following sub-
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iteration scheme (Matsuno, 1993) developed for the
higher-order time accuracy is employed. It can be
briefly described by the following simplified equation.

R F_,, (17)
ot ox

A typical implicit scheme can be written as,

1,00 T [(OFY
[E*%A ]AQ _ [axj (8)

where AQ"=Q™ —-Q", A is the Jacobian of F ,
and @ is 1 for fully implicit scheme of the first order,
and 0.5 for the second order time accuracy.

Let superscript (v) be the sub-iteration index, we
can rewrite the AQ" as,

AQ"=Q" -Q"=Q" +5Q" - Q" (19)

13 " . . .
where §Q  =Q“" ~Q" is the correction value for

the time accuracy. The final implicit scheme, then,
can be written as,

i o 1
A e__Arv) 5 (0 ) _ ey
| ro2an | =-tie -]

In the present computation, fully implicit scheme
(@=1) of the first-order time accurate was used to
save the memory. The sub-iteration for the time
accuracy is also utilized to update the values on the
cube boundaries.

The memory requirement of the present flow solver
is small. The required arrays for the entire flow field
are only for the five flow variables in two time planes.
This makes the total memory requirement to be about
10 to 12 words per node. For example, if each cube
has 256x256 cells and the total number of cubes is
500, the total number of computational cells is
32,768,000. This is 1.3Gb memory (4 byte per words).
If the higher-order time accuracy is employed,
solutions on one or more time planes are required.
However the total memory requirement is still
relatively small.

4.3 Boundary conditions

The wall boundary is defined by a staircase repre-

sentation as shown in Fig. 3 in order to keep the
simplicity of the algorithm and to minimize the
memory requirement per node. To keep the geo-
metrical accuracy by the staircase representation of
wall boundaries, very fine mesh that resolves viscous
sublayers in the boundary layers is used. Although
this needs an excessive mesh density, it is a
straightforward approach to realize the DNS around a
complex geometry in future.

The body boundary is defined by the cell
boundaries between adjacent cells having different
marks as shown in Fig. 3. The density and pressure at
the ghost cell, which locates inside of the body and
next to the flow-cells, are given by the following
manner.

(p,* flag)! Y. @

i (adjacent cells)

p ghost = ﬂ ag i

i (adjacent cells)

Here the value of flag is 0 for a cell in the body and
1 in the flow field. Meanwhile, the velocity com-
ponents at these ghost cells for the solid wall
boundary are set to be zero.

At cube boundaries, the information exchange is
required between adjacent cubes. The simplicity of
the algorithm is also kept by using ghost cells at the
cube boundaries. At each side of cube, three ghost
cells are added beyond the cube boundary. Therefore,
if the sizes of two adjacent cubes are same, the six
exact overlapping of cells at boundary ensure the
accurate transfer of the information. The information
transfer from smaller cube to larger one is performed
by assigning the average values of smaller cube near
the boundary. The transfer from the larger cube to
smaller one is by just taking the value on in the larger
cells. Because this procedure is slightly less accurate,
therefore, the same size of cubes should be used near
the body boundary.

Updates of the solution at the cube boundaries are
performed combined with the sub-iteration for the
time accuracy as described in the previous section.

4.4 Efficiency improvements

With the present approach using the cubes, various
techniques for improving the computational efficiency
are possible.

(a) Parallel computation: The parallel computation
of the present method is straightforward because of
the same mesh density at all cubes. The simplest
parallelization is to distribute the cubes to the CPUs
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in a sequential manner. However, the computational
density of the cube is not large enough for 2D
computations. Therefore, a grouping of cubes for
parallelization will be required to obtain high par-
allelization efficiency for 2D case.

(b) Mesh sequence: In order to reduce the
computational time especially for steady flows, a
mesh sequence is employed utilizing the advantage of
the Cartesian mesh. This is to use the pixel skipped
mesh at each cube at the early stage of the
computation. Figure 5 shows an example of multi-
element airfoil computations with the mesh sequence.
The final BCM mesh has 64x64 cells in each cube.
The computation is started by the same cube mesh
with 16x16 cells in each cube for the first 500 steps
[Fig. 5 (a)]. Then, the next 500 steps are computed by
32x32 cells in each cube [Fig. 5 (b)]. Then the finest
mesh is used for the final result [Fig. 5 (c)]. This mesh
sequence is very effective not only for steady flows
but also for setting up the flow field for unsteady
flows.

The pixel skipping is also very useful for the post-
processing of large-scale computations.

(c) Active-cube selection: A method of an active
cube selection is also developed where the residual at
each cube is monitored at the end of each time
integration, and the small residual cubes, named non-
active cubes, are skipped in the next time integration.
This is especially effective for supersonic flows. Also,
for supersonic flows, the active-domain marching
proposed for the unstructured mesh (Nakahashi and
Saitoh, 1997) is also utilized in a straightforward
manner.

4.5 Parallelization

The present method is well suited to parallel
computers. In this study, the OpenMP (www.openmp.otg)
is used to parallelize the flow solver and run on the
NEC SX-7 parallel computer at Supercomputing
System Information Synergy Center in Tohoku Uni-
versity. This parallel computations were performed
by 64x64 Cartesian mesh in 481 cubes for a four-
element airfoil at AOA=8.16 degrees, freestream
Mach number=0.201, Re=2.83x10°. The perfor-
mance of the parallelization was very close to the ideal

ek

(2) Computed Mach contours with 16x16 mesh in each cube.

aeun

Fig. 5. Computations by mesh sequence from 16x16 to 64x64 Cartesian meshs in cubes for a two-element airfoil at M,=0.2,

a =0", Re=5000.
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No. of CPUs

Fig. 6. Speedup in SX-7; Number of cubes is 481.

one when 32 CPUs were used for the computations as
shown in Fig. 6.

5. Adaptive cube refinement

For computations using unstructured meshes, the

adaptive mesh refinement (AMR) is very effective to
improve the local resolution. However, the use of
refinement/un-refinement for unstructured mesh may
accompany some problems, such as the increase of
memory overhead and the difficulty of the dynamic
load balancing for parallel computations. The AMR is
also used for the Cartesian mesh to locally increase
the mesh resolution. However, it introduces the
complexity into the Cartesian mesh approach.
In contrast, the implementation of the AMR is
straightforward in the present approach if the adaptive
refinement is applied not to the mesh but to cubes.
Since the number of cubes is relatively small, the
cube refinement is quite simple and the refinement
does not cause the difficulty of the dynamic load
balancing in parallel computations.

For the selection of cubes that are divided,
Laplacian filter that is used in the image processing to
capture the contours is employed. The Laplacian filter
is given in the following equations.

&4 =f;’1¢-1 +f,—u +fj+u +f/,k+1 _‘4]}./\- (22)

The Laplacian filter is effective to detect the flow
discontinuity.

The summations of the absolute values of La-
placian of all flow variables in a cube are computed

E H
=
=

Fig. 7. Computed Mach contours around NACAO0012 airfoil
at M, =0.5, a=3", Re = 5000. Total number of cubes is 561
with 64x64 cells in each cube. The minimum spacing is
4.58x10™.

for all cubes at first. Then the cubes having larger
values are selected for the refinement by specifying
the allowable increment of the total number of cubes.
At each refinement, the cube size difference between
adjacent cubes has to be always checked.

6. Computational results

6.1 NACA0012 airfoil

Figure 7 is a test case for the NACAO0O0I12 airfoil
computations at the freestream Mach number of 0.5,
angle of attack of 3 degrees and the Reynolds number
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Fig. 8. Computed Mach contours around NACAQ012 airfoil
atM,=2, a=3", Re=5000.

of 5,000. The total number of cubes is 561 after the
adaptive cube refinement with 64x64 cells in each
cube. The minimum spacing near the airfoil surface is
4.58x10™. The computation was performed with the
fourth-order spatial accuracy and the first-order time
accuracy, though the computed flow field was steady
state.

As shown in the enlarged figures around the
leading and trailing edges, the minimum spacing of
4.58x10* is much smaller than the boundary layer
thickness and the staircase representation of the wall
boundary does not cause any disturbances on the
Mach contours near the surface.

Figure 8 shows the computed Mach contours at
Mach 2, angle of attack of 3 degrees and the
Reynolds number of 5,000. Owing to the fine mesh,
the shock waves are crisply captured. The wake is
also sharply shown and continues to the downstream
boundary.

6.2 Two-element airfoil

Figure 9 is a test case for a two-element airfoil. The
total number of cubes is 336 after the refinement, and
the minimum spacing near the wall boundaries is
7.63x10™. The freestream Mach number is 0.2, the
angle of attack is 0 and the Reynolds number is 5,000.

The computations were performed with the fourth
order spatial accuracy and the first order in time.
Figure 9 is the instantaneous density and Mach
contours showing the periodical shedding of vortices
from the flow separation on the upper surface of the
flap. With the higher order accuracy and the very fine
mesh, the contours of vortices are sharply depicted.

Fig. 9. Computed density (upper) and Mach (lower) con-tours
around a two-clement airfoil at M, = 0.2, a =0°, Re= 5000.

6.3 RAE2822 airfoil

RAE2822 airfoil is commonly used as a test case of
the newly developed flow solver as well as the
turbulence models. In this experiment (Cook et al,
1979), the boundary layer transition trip of diameter
0.762 mm was attached at 3% chord length on the
upper surface of the airfoil. The airfoil chord length
was 0.61 m. There is no description in the report
about the type of the transition trip whether it is a wire
or spheres. Here we assume that the transition trip is a
wire and compute as the two-dimensional flow.

~ Although the turbulence at high-Reynolds number

always has a three-dimensionality, it will be worth to
apply the present method for testing the capability.

Total number of cubes is 486 with 256x256 cells in
each cube. Therefore the total number of computational
cells is about 32 millions. Even with this large
number of cells, the size of the mesh file is small
owing to the runlength compression. The required
memory of the flow solver with this mesh size is
about 1.4 GBytes which can be handled by personal
computers.

The minimum spacing near the airfoil surface is
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Fig. 10. Cube boundaries and an enlarged view of the Cartesian mesh in a cube that includes the transition trip.

1.14x10™. This value is very close to the thickness of
the viscous sublayer for flow of Reynolds number of
million. The Reynolds number of the present case is
6x10°, so that some more small spacing may be
required.

The diameter of the transition trip is 1.25x10” in
the non-dimensional value with the chord length.
Therefore, the trip wire can be described by the
present mesh about 10 cells in x and y coordinates
directions as shown in Fig. 10. Even with the
transition trip, the BCM mesh generation was quite
simple. The geomefry was defined by a one-
dimensional array of points including the trip
geometry, and the remaining procedure of the mesh
generation is fully automatic.

The flow was computed by the third order spatial
accuracy and the first order time accuracy. Three
levels of the mesh sequences, namely 64x64,
128x128, and 256x256, were used to settle the initial
flow field. In the post- processing, the pixel skipped
mesh was also utilized for drawing the flow field.
Figure 11 was painted by 64x64 mesh using the
256x256 results because of the memory limitation of
the post-processing software. Figure 12 s the original
resolutions of 256x256 in a cube because of the
smaller size of drawing region.

The computed result with this fine mesh shows the
detailed flow features as shown in Figs. 1! and 12.
Especially, in Fig. 12, the thin boundary layer in the
leading edge region is thickened in the upstream of
the trip wire. In the downstream of the trip wire, very
small vortices are shed periodically. The flow field at
the root of the shock wave becomes more complex
due to the interaction between the on-coming vortices
and the shock wave. In this region, however, two-

(b) Density contours

Fig. 11. Computed contours around RAE2822 airfoil at M. =
0.73, @ =2.79", Re = 6.56x10°.
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(a) Computed Mach contours near transition trip

(b) Computed density contours near trailing edge

Fig. 12. Computed contours in the leading edge and trailing
region of RAE2822 airfoil at M, = 0.73, a=2.79°, Re=
6.56x10°.

dimensionality of the flow cannot exist in the real
physics, so that to discuss the flow feature with this
two-dimensional computation is dangerous. However,
at least it can be concluded with this computation that
the highly dense mesh can give us very fruitful
information of the flow physics. It is also demon-
strated that the present approach is capable to si-
mulate the complex flows with complex geometry in
a simple procedure.

6.4 Four-element airfoil

Figures 13 and 14 are the computed instantaneous
density and Mach contours of a four-element airfoil,
respectively. The angle of attack is 8.16 degrees, the
freestream Mach number is 0.201, and the Reynolds
number is 2.83x10°. The total number of the cubes is
481, and the mesh in each cube is 256x256. The

(a) Enlarged view near slat

(b) Enlarged view near flaps

Fig. 13. Computed density contours over a four-element
airfoil; AOA=8.16 degrees, freestream Mach number=0.201,
Re=2.83x10°. Number of cubes=481, Mesh in each
cube=256x256, Minimum spacing=1.4x10".

minimum spacing for this mesh is 1.4x10™. The
wakes of the slat, main airfoil, bane and flap can be
seen clearly. It is also observed that many small
vortices flow downward in the wall boundary layers.
Figure 15 shows the instantaneous Cp distribution
over a four-element airfoil. Because of the small
vortices along the airfoil surface, many sharp suction
peaks appeared in this figure. However, the overall
Cp distribution shows quite good agreement with the
experiment. This result is very interesting because the
computation was conducted without any turbulence
models. A comparison of the pressure coefficients of
the time-averaged result with the experiment (Omar
et al., 1979) is shown in Fig. 16. The computation did
not use any turbulence models but the result showed



L. S. Kim et al. / Journal of Mechanical Science and Technology 21(2007) 1306~1319 1317

(a) Entire view

(c) Enlarged view near flaps

Fig. 14. Computed Mach contours over a four-element
airfoil; AOA=8.16 degrees, freestream Mach number=0.201,
Re=2.83x10°. Number of cubes=481, Mesh in each
cube=256x256, Minimum spacing=1.4x10™,

Present

Fig. 15. Instantaneous pressure distribution over a four-
element airfoil; AOA=8.16 degrees, freestream Mach
number=0.201, Re=2.83x10%.
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Fig. 16. Time-averaged pressure distribution over a four-
element airfoil; AOA=8.16 degrees, freestream Mach
number=0.201, Re =2.83x10°.

good agreement with the experiment. This indicates
that, with the enough resolution, the computation
without physical models can accurately simulate the
flows.

Figures 17 and 18 show the comparisons of the Cp
distributions and pressure contours over a four-
element airfoil among the experiment, the unstruc-
tured-mesh computation (Kim and Nakahashi, 2003)
with Goldberg-Ramakrishnan (G-R) turbulence
model (Goldberg and Ramarkrishnan, 1993) and the
present BCM com-putation without turbulence model,
respectively. It is observed that good agreement was
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Fig. 17. Comparison of Time-averaged pressure distribution
over a four-element airfoil; AOA=8.16 degrees, freestream
Mach number=0.201, Re=2.83x10°.

(a) Pressure contours computed by unstructured-mesh com-
putation with G-R turbulence model.

(b) Pressure contours computed by present BCM computation
without turbulence model.

Fig. 18. Comparison of computed pressure contours over a
four-element airfoil; AOA=8.16 degrees, freestream Mach
number=0.201, Re=2.83x10°.

obtained as a whole. This presents that although
computation without turbulence model is performed,
if as fine mesh as complex physical phenomena like
wake interaction, confluent boundary layer are
captured and isotropic mesh over a four-element
airfoil are used, the computed result can show the
good agreement with experiment data.

7. Conclusions

In this study, an approach named Building-Cube
Method, aimed for large-scale computation on near-
future advanced parallel computers, was developed.
The method is based on the Cartesian mesh, and the
local grid density is adapted to the flow characteristic
length by changing the cube size. Equal spacing and
equal number of Cartesian grid in each cube make it
easy to parallelize the flow solver and to handle huge
data output. By use of the advantage of the Cartesian
mesh in cubes, several techniques were developed
such as, the mesh data compression, the mesh
sequence and the active-cube selection for improving
the computational efficiency and the post processing.

The method was applied to the two-dimensional
viscous flows; NACA 0012 and two-element airfoils
at relatively low Reynolds number, RAE2822 airfoil
with transition trip at high Reynolds number and four-
element airfoil at high Reynolds number. The
computed results showed detailed flow features near
the airfoil surfaces owing to the high-density mesh.
Especially, the pressure coefficient distributions of the
time-averaged result of the four-element airfoil showed
good agreement with the experiment data and results
computed by unstructured-mesh method with G-R
turbulence model. It is interesting that, with the high-
density mesh, the computations without turbulence
models show reasonable results. '

Nomenclature

i : One-dimensional array
ik : Mesh index

Xtx,y) : Cartesian coordinates
u,v : Velocity components
0] : Conservative variable

e : Total energy
t : Time

F : Inviscid flux vector
G : Viscous flux vector
As : The size of the cube
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o : The number of cells
A : Jacobian of F

h : Numerical flux

n : Normal vector
Greek symbol

£ Density
Superscript

v :Sub-iteration index
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